If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49^2+x^2=625^2
We move all terms to the left:
49^2+x^2-(625^2)=0
We add all the numbers together, and all the variables
x^2-388224=0
a = 1; b = 0; c = -388224;
Δ = b2-4ac
Δ = 02-4·1·(-388224)
Δ = 1552896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1552896}=\sqrt{2304*674}=\sqrt{2304}*\sqrt{674}=48\sqrt{674}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-48\sqrt{674}}{2*1}=\frac{0-48\sqrt{674}}{2} =-\frac{48\sqrt{674}}{2} =-24\sqrt{674} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+48\sqrt{674}}{2*1}=\frac{0+48\sqrt{674}}{2} =\frac{48\sqrt{674}}{2} =24\sqrt{674} $
| 22=-0.0114x+41.3021 | | 2(4x−3)−8=0 | | 189=-6x+4(-7x-18) | | -4-5x+x=-24 | | 2(b+10)=8 | | 8.6=v+7.3 | | 3b-7=5b | | 7q^2-19q=23 | | 6•2^x/4=222 | | (5x)+(x+12)+(x)=180 | | x+3=9.2 | | 2/3k-12=-20 | | 7x-16-15x=4 | | -13=-4b+3+8 | | 5+6x=143 | | 3x-9x+6=30-3x=4x | | 9x-9=x+21 | | X=44x+6= | | 3(4x+2)+2x=62 | | 9x=7=-20 | | 10x-5x-44-6+50=100 | | x/12+5=-1 | | B+2b+4b=56 | | 2x/16+124=180 | | 20y-11=4y+6 | | 4y+6+20y-11=360 | | 4.5x-9+15x=6x-8-1 | | 3x-2.25=4.5 | | x^2+2x=54000 | | 2n+5=3n+10 | | 49x2-4(Y+11)=3Y-2 | | 12*z=24- |